

PFPNet Conference 2024

Three Sided PFP Scoping Study – Finite Element Results

> Amsterdam 21st – 22nd October 2024

Introduction

The main objective of this study is defined as the provision of guidance on the severity of three sided PFP partially protected I-sections subjected to hydrocarbon fires impingement.

This project involves understanding of the structural consequence of leaving the top flange unprotected allowing for local heat conduction that can lead to prevent premature failure of the protected item.

The present study is to undertake a scoping study, thereby defining a project plan that can be used in support of generic guidance through the future design of three-sided PFP, in conjunction with categorisation of the nature of structural response, to ultimately assist a suitably qualified person in making a judgement on the influence of 3-sided PFP with respect to the fire resistance period of a protected structure or item.

A series of heat transfer and stress analyses were performed on different beam sizes to understand the parameters that affect the response of partially protected 3-sided PFP beams.

Fire Scenario

01

Hydrocarbon fire curve

The hydrocarbon fire curve was applied to the beams modelled:

- 1) The burning rates for certain materials e.g. petrol gas, chemicals, etc, are well in excess of the rate at which, for instance, timber would burn.
- 2) The temperature development of the Hydrocarbon (HC) fire curve is described by the following equation: T = 20 + 1080 * (1 0.325 * e 0.167 * t 0.675 * e-2.5 * t).

Heat Transfer and Structural Fire Results

02

Structures Assessed

- 24 beam configurations were assessed against the selected pool fires.
- Vertical loading was applied to the structural model prior the application of the fire loads.
- A series of heat transfer analyses was then performed on the fully protected or partially protected PFP beams. The heat transfer analyses calculated the heat up of the structure subjected to the fire event.
- Finally, the structural transient fire collapse analysis calculated the response of the structure subjected to gravity and fire loads.

Analyses Combinations

Beam Loading

The applied load was calculated to provide approximately 50% plastic moment utilization according to the Eurocode 3 (EN 1993-1-1:2005). However, universal beam type of sections are dominated by lateral torsional buckling stability checks.

The figure below shows the loading and boundary conditions of the beams, the beams were modelled as pin in one support and a roller pin support with free axial displacement in the other support.

H60 PFP Results

W10x49 3-Sided 400°C H60

W10x49 3-Sided 538°C H60

W10x49 4-Sided 400°C H60

W10x49 4-Sided 538°C H60

W10x22 3-Sided 400°C H60

W10x22 4-Sided 538°C H60

W10x22 4-Sided 400°C H60

W10x22 4-Sided 538°C H60

PG1500 3-Sided 400°C H60

PG1500 3-Sided 538°C H60

PG1500 4-Sided 400°C H60

Heat up plot	Heatup Curve	Failure time [mins]	Failure Mechanism
Tengenter		+60mins	N/A
		0.016 10.014	

PG1500 4-Sided 538°C H60

H120 PFP Results

W10x49 3-Sided 400°C H120

W10x49 3-Sided 538°C H120

W10x49 4-Sided 400°C H120

W10x49 4-Sided 538°C H120

W10x22 3-Sided 400°C H120

W10x22 3-Sided 538°C H120

W10x22 4-Sided 400°C H120

Heat up plot	Heatup Curve	Failure time [mins]	Failure Mechanism
		+60mins	N/A
To a second seco		0.004 10.0035 0.0025 0.0015 0.0005 0 0.0005 0 0 0 0 0 0 0 0 0 0 0 0 0	

W10x22 4-Sided 538°C H120

PG1500 3-Sided 400°C H120

PG1500 3-Sided 538°C H120

PG1500 4-Sided 400°C H120

Heat up plot	Heatup Curve	Failure time [mins]	Failure Mechanism
1000 Marco 1000		+60mins	N/A

PG1500 4-Sided 538°C H120

Results Summary

Results Summary

• The results are summarized in the table below:

Beam Size	PFP Coverage	CCT [°C]	Fire Rating	Failure Time	Failure Mechanism
DC1500-400-40-60		400 HC 60 22 LTB		LTB	
	3-sided	400	HC 120	27	LTB
		F20	HC 60 20.5 LTE	LTB	
		538	HC 120	21.5	LTB
PG1500X400X40X60	4-sided	400	HC 60 60 -		-
		400	HC 120	60	-
		E20	HC 60 60 -		-
		530	HC 120	60	-
	3-sided	400	HC 60	4	LTB
		400	HC 120	5.6	LTB
		F20	HC 60	5	LTB
W10x22		538	HC 120	5	LTB
	1 sidad	400	HC 60	60	-
		400	HC 120	60	-
	4-Sided	F20	HC 60	60	-
		220	HC 120	60	-
	3-sided	400	HC 60	HC 60 5 Bending	
		400	HC 120	5.1	Bending
		E20	HC 60	HC 60 5 Bending	Bending
W10x49	538		HC 120	5.1	Bending
		400	HC 60	60	_
	4 cided	400	HC 120	60	-
	4-Slueu	E20	HC 60	60	<u> </u>
		538	HC 120	60	-

Sensitivity Analysis Effect of Lateral Support

Sensitivity on Lateral Support

Protecting intermediate orthogonal beams reduces the unrestrained length of the beam, helping to improve the response against Lateral Torsional Buckling (LTB).

For this sensitivity assessment, the following restrain was provided:

- W10x49 and W10x22 were only laterally restrained at mid span,
- PG1500x400x40x60 was restrained at every 2.5 metres i.e., 11 internal lateral supports.

Results Summary

• The results are summarized in the table below:

Case number	Beam Size	PFP Coverage	сст [°С]	Fire Rating	Unrestrained Failure Time	Failure Mechanism	*Restrained Failure Time	Failure Mechanism					
1		3-sided	400	HC 60	5	Bending	7.3	Bending					
2			400	HC 120	5.1	Bending	7.4	Bending					
3			E 2 9	HC 60	5	Bending	7.2	Bending					
4	14/10/10		556	HC 120	5.1	Bending	7.4	Bending					
5	VV 10X49		400	HC 60	60	<u>-</u>	60						
6		1 sided	400	HC 120	60	<u>-</u>	60	<u>-</u>					
7		4-Sideu	529	HC 60	60	-	60	<u>-</u>					
8			556	HC 120	60	-	60	<u>-</u>					
9			400	HC 60	4	LTB	4	LTB					
10		3-sided	400	HC 120	5.6	LTB	6	LTB					
11	3-SI		520	HC 60	5	LTB	6	LTB					
12			536	HC 120	5	LTB	66	LTB					
13	VV 10XZZ		400	HC 60	60	-	60	<u>-</u>					
14		4-sided		HC 120	60		60	<u>-</u>					
15			520	HC 60	60	-	60	<u>-</u>					
16			556	HC 120	60		60	<u>-</u>					
17	 PG1500x400x40x6 							400	HC 60	22	LTB	60	Slightly increased sagging displacement, but no failure
18			2 sided	400	HC 120	27	LTB	60	Slightly increased sagging displacement, but no failure				
19		1500x400x40x6 0	529	HC 60	20.5	LTB	60	Slightly increased sagging displacement, but no failure					
20			556	HC 120	21.5	LTB	60	Slightly increased sagging displacement, but no failure					
21			400	HC 60	60	-	60	<u>-</u>					
22		1 sided	400	HC 120	60	<u> </u>	60	<u>-</u>					
23		4-Slued	529	HC 60	60		60						
24			536	HC 120	60	-	60						

Conclusions

Conclusions

- The results show that adding more PFP thickness either by reducing the PFP critical core temperature (CCT) from 538°C to 400°C, or increasing the fire ratings (HC60 vs HC120), has a negligible effect in the failure times specially on shallow beams which are dominated by conduction from the unprotected to flange.
- For deeper beams, increasing the PFP thickness shows a modest improvement in the response, however the beam still fails prematurely compared to a 4-sided protected beam.
- As expected, all 4-sided PFP beams were able to withstand the 60 minutes of fire impingement without reaching failure.
- Implementing lateral supports had a negligible impact on the shallow beams, but proved effective for the deeper beam.

Any Questions?

Dr Enrique MUNOZ GARCIA enrique.munozgarcia@kentplc.com +4478192904

Kirkgate House, Upperkirkgate, Aberdeen, Scotland AB10 1HW

