

Load Resistance of 3-Side PFP Beams & Means of Achieving Requirement

Yong Wang Professor of Structural and Fire Engineering, University of Manchester

Outline of contents

- Introduction to a few specialist terms: plastic bending resistance, lateral torsional buckling (LTB), effective lateral restraint & key questions for 3 side PFP beams
- Findings of PFPnet scoping study
- Study cases
- Narrow beams: without/with lateral restraints
- Long deep beam: without/with lateral restraints
- Requirements for effective lateral restraints
- Important conclusions & way forward

Specialist terms: plastic bending resistance, LTB, lateral restraint

- Plastic bending resistance: materials reach maximum stresses
- LTB: Out-of-plane movement & twist under in-plane loading
- Longer buckling length = lower resistance
- Worse for deeper/narrower beams

Key questions for 3 side PFP beams

- If lateral restraints are assumed in cold design, so that the structure can reach plastic bending resistance, but they are lost due to fire, what are the implications?
- If lateral restraints can be maintained in fire, would the plastic bending resistance be sufficient in fire?

Results of PFPnet Scoping Study

MANCHESTER 1824 The University of Manchester Cases

Structural data

- 30m PG1500x400x40x60, 5m W10x22, 5m W10x49. Span/depth = 20.
- Point loads @2.5m.
- Simply supported ends. No axial restraint, but with warping restraint.
- Lateral restraint conditions:
- No
- @2.5m for all beams
- @5m for 30m long beam

Temperature data

- Use PFP thicknesses for 4-side PFP reaching CCT=400°C and 538°C @H60 & H120.
- Equivalent thermal properties of typical PFP materials.
- 10%/20% reduction of top temperature for deep beams.

Difference in temperature distributions in shallow and deep beams

Results for shallow beams

Without effective lateral restraint

W10x22

MANCHESTER 1824

The University of Manchester Offective lateral restraint

W10x22

W10x49

Main messages

- Beam not able to have meaningful fire resistance in idealised 3-side PFP, due to rapid reduction in plastic bending resistance, <50% of ambient before 5 minutes.
- 3-side PFP beam resistance a fraction of 4-side PFP beam resistance
- LTB resistance of <u>narrow</u> beam without lateral restraint very low, hence benefits more from lateral restraint.
- Almost negligible change in resistance with different coating thicknesses (due to high top flange temperature & rapid heat conduction from inside)

What can be done with shallow beams?

- No more than a few minutes of fire resistance in idealised 3-side PFP conditions.
- Ok to lose them in fire? If so, then nothing need doing.
- Very low applied load (e.g. <10% ambient plastic bending resistance) & short heating duration (e.g. <15 minutes)? – possible to demonstrate adequacy.
- Unaccounted but reliable sources of fire protection to the top flange?

Results for 30m long beam

Without effective lateral restraint

With effective lateral restraints

Restraint @2.5 spacing

Restraint @5m spacing

Main messages

The University of Manchester

- LTB resistance of unrestrained beam = tiny proportion of plastic bending resistance (10-15%).
- Slow reduction in plastic resistance due to limited heat conduction from inside. Plastic bending resistance ~ 50% ambient @H60.
- Lateral restraints effective: LTB resistance ~60% plastic bending resistance @5m restraint spacing, ~80% @ 2.5m restraint spacing
- Limited enhancement effects of reducing top flange temperature (due to resistance mainly from the lower part of the section)
- Could be engineered to achieve required fire resistance in idealised 3-side PFP
- Possible means of achieving required fire resistance:
- Effective lateral restraints
- Low design loads in fire (e.g. <<40% ambient plastic bending resistance)
- Other benefits: limited length of fire exposure/possible cooling effects at top flange

Requirements for effective lateral restraint

Potential source of lateral restraints – secondary beams

Results (Beam load – Spring force relations)

Summary of results

		Spring Force / Upper Flange Axial Capacity at max temp [%] (normalised by ultimate capacity of the beam)	
Beam	Spring Stiffness	1%	2%
W10x22	1%	76.5%	79.0%
	2%	77.2%	77.9%
	5%	79.4%	81.0%
	10%	82.9%	83.9%
	100%	93.3%	94.0%
PG1500x400x40x60	1%	48.2%	55.9%
	2%	49.0%	51.9%
	5%	55.0%	58.0%
	10%	63.0%	68.0%
	100%	88.0%	97.0%

Force resistance

- Required: spring axial resistance (area) > 2% of beam top flange
- Top flange area
 (PG1500x400x40x60) =
 240cm²
- Provision
- W36x16x245 (H=916.4mm, B=419.4mm, tw=20.3mm, tf=34.3mm)
- A=460cm²

Example from a typical structure

Spring stiffness

- Required: spring stiffness > EI/L³ of in-plane bending
- EI/L³ ((PG1500x400x40x60) 2992
 N/mm
- Provision:
- EA/I (W36x16x245)= 707700N/mm @ 20°C
- @1150°C,
 EA/I>0.01*above=7077N/mm >
 2992 N/mm

Conclusions & way forward

- <u>Shallow beams:</u> high top flange temperature & rapid heat conduction from inside = rapid reduction in plastic bending resistance & cannot be engineered to achieve required resistance in idealised 3-side PFP.
- Not needed?/low load & time?/demonstrating effective 4-side PFP
- <u>Deep beams: plastic bending resistance substantial (50%+ ambient)</u> due to large lower part low temperature. LTB resistance tiny fraction of plastic bending resistance without lateral restrain. Lateral restraints (e.g. @2.5m/5m spacing) effective in LTB resistance being high % (~80%/60%) plastic bending resistance. Possible to achieve required fire resistance.
- Effective lateral restraints/modest applied load in fire
- Benefits of fire exposure along not along the entire beam/possible shielding effect (minor)
- <u>Effective lateral restraint:</u> should be able to resist 2% of top flange compression resistance at the maximum temperature not difficult to provide.