X.International. Hydrogen Is ISO 228 riate Robin Wade - Global Fire Protection Manage

AkzoNobel

Hydrocarbon pool fire - characteristics

- Diffuse fires with little momentum.
- Items engulfed by the fire experience 100-250kW/m²
- At 204kW/m², the fires are viewed as being represented by the UL1709 time temperature furnace control curve (1100C after 5 minutes)
- There is significant radiative (luminous fire) component responsible for the incident heat flux (FABIG technical note 11)

5

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Hydrogen jet fire - characteristics

- Radiative component appears not high when compared with hydrocarbon fuels
- However, flames can be more luminescent under certain conditions (e.g. higher humidity)
- Hydrogen can ignite over a wider range of concentrations with air and requires significantly lower ignition energy

(Photo courtesy of HAMMER)

7

Hydrogen jet fire - typical releases

- Hydrogen, in its gaseous state, is stored at very high pressures for transportation and storage – Sufficient fuel density to be viable (350barg or 700barg is typical for use as transportation fuel although pressure can be as high as 1000barg)
 - Release may impinge on other objects within close proximity – 0.5m would not be uncommon
- Processing conditions to generate gaseous hydrogen varies depending upon the method. Typical pressure at production tends to be ~50-75 barg
 - Release for onshore production facilities rarely impinge objects withing 3m.

Modelling studies were conducted to evaluate various test set-up conditions	Outcome from Gexcon's simulations
	Optimal pipe diameter: 60 mm
Limitations due to equipment meant only small orifice releases (0.5-1mm) were possible for 10-15 minute fire duration	Optimal pipe wall thickness: 6 mm
	Optimal length of pipe in total: 0.6 m
	Optimal exposed length of pipe: 0.5 m
	Optimal distance of jet source to pipe: 0.5 m
	Optimal diameter of jet source orifice for a steady pressure: 1 mn
	Optimal release pressure for a steady release: 250 bar

Tests conducted

- Test characteristics:
 - From the side, no visible flame
 - From the front only heating of the test object and rear to the box showed evidence of heating
 - Temperature of the flame appeared higher than predicted from modelling
 - Aggressiveness of jet increased with respect to standard hydrocarbon jet fire tests

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item>

