

PFPNet Houston 2025

Assessment and Repair of Damaged PFP

Simon Thurlbeck, PhD CEng Director, PFPNet

May 1st, 2025

What do we know about performance of old fireproofing/PFP systems

Testing Old Fireproofing Materials 30 Years in the North Sea

- Mandolite M40 and Chartek 59
- Originally for A60 bulkheads
- Subject to hydrocarbon pool and jet fire testing for 2 hours
- Looking for time to 140°C on panels and 400°C on webs
- Both materials good on panels
- Both underperformed on webs but gave some performance
- Cause: thinner material and mesh location

Shell/HSE Long Term Weathering Tests

PFP	Weathering	Thickness (mm)	Reinforcement
Chartek III	10.7 years	22	Wire mesh at 5 mm
Chartek IV	8.5 years	15	Wire mesh round perimeter Carbon / glass mesh at 8 mm
Firetex M90	7.5 years	19	H120 scrim mesh at 9 mm
Mandolite 550	12.4 years	45	Wire mesh at 30 mm
Pitt-Char XP	10.7 years	29	No mesh – only 5 x 30 mm diameter washers at 14 mm
System E (Mandolite 990)	8.5 years	19	Wire mesh at 10 mm
Thermolag 400	10.7 years	20	Wire mesh at 10 mm

All coatings
Initiated in 1990 – 35 years ago
Coated to H120 specification
CUF occurred at edges due to poor preparation
PittChar XP suffered from this preparation issue

PFP	Thick -ness	Furnace test mean time for 140 °C rise (minutes)		Fire resistance after weathering	Jet fire test mean time for 140 °C rise	Fire resistance after weathering
	(mm)	Initial	Final	<u>+</u> 12 min.	(minutes)	<u>+</u> 15 min.
Chartek III	22	72	67	SAME	97 top	BETTER
Chartek IV	15	54	56	SAME	77 top	SAME
Firetex M90	19	66	68	SAME	56 bottom	SAME
Mandolite 550	45	87	> 120	BETTER	117 bottom	BETTER
Pitt-Char XP	29	68	87	SAME	35 bottom	WORSE
System E	19	68	62	SAME	44 bottom	SAME
Thermolag 440	20	51	99	BETTER	113 bottom	BETTER

Non-Coating Systems Enclosures, jackets, penetrations, etc

- No weathering/ageing testing reported
- Performance affected by combinations of:
 - Removal and correct reinstatement
 - Repeated removal
 - Seals
 - Weather shielding
 - Corrosion protection systems

Conclusions on "Ageing" of PFP Systems

- Limited published data some is confidential
- We know legacy Fireproofing/PFP systems perform in fires
- Some fire test standards allow for a reduction in fire resistance performance of coatings after durability test exposure (10%-25%).
- Age can be managed IF MAINTAINED
- For long term performance, Fireproofing/PFP systems must be correctly:
 - designed and detailed,
 - manufactured,
 - specified,
 - installed and,
 - maintained and repaired through life to manufacturers recommendations

Damage Severity Levels and Advisories

Severity – a measure of how bad damage is in terms of fire resistance performance and/or integrity damage

Damaged PFP PFP Severity Level Guidelines

Fireproofing/PFP Systems

- Lightweight Cementitious Coatings
- Epoxy Intumescent Coatings
- PFP Jacket Systems
- PFP Enclosure Systems
- ** Concrete Fireproofing**

Protected Items

- Structural Steelwork
- Equipment Supports
- Barriers
- Critical Process Control Equipment (CPCEs)
- Process vessels and pipework

Will be used in PFPNet Training Courses

What are Severity Levels? Assessment Guidelines

- A best estimate of how bad damage is
- Based on limited published test data, analysis results, and <u>a lot</u> of opinion and experience
- PFPNet has collected what is available, and asked industry
- Not a risk assessment method
- An input to <u>any</u> assessment methodology
- Aimed at inspector/integrity manager
- Considers fire protection and substrate integrity

Damaged PFP JIP

Analysis Results

Example: W10 x 49

Location and size of damage Dimensions of member Restraint, load level

Exposed Steel Temp (°C)	PFP Loss Length	Capacity / Failure Load (kN)	Failure Mode
26°C		2,000	Capacity governed by yielding
1,000°C	0.5 m	1,098 (55%)	Flange local buckling and subsequent global buckling
1,000°C	1.25 m	976 (49%)	Flange local buckling and subsequent global buckling

Severity Level	Description of Anomalies	Action
Level 3:	Anomalies present but will not affect the <u>immediate</u> fire and integrity performance.	Anomalies have the potential to become Severity Level 2 or 1 anomalies if not dealt with in a timely manner.
Level 2:	Anomalies will result in a level of fire protection that is below that of original state, <i>but some fire protection will still be provided</i> . Anomalies will lead to a significant and rapid deterioration of the PFP system, or the substrate, before next routine scheduled inspection.	reduced performance or loss of integrity is unacceptable, or to prevent degradation to a Level
Level 1:	Presents immediate dropped object hazard to personnel. Anomalies cause gross failure of PFP during fire scenario Anomalies directly invalidate the certified rating of a PFP system that is critical for emergency response or prevention of escalation Anomalies located on a region of the protected item which is critical to the fire resistance performance of the item in a fire CUI caused by PFP is severe and loss of substrate integrity is judged imminent.	Immediate** remedial action required to remove immediate hazard, restore require fire protection resistance or remediate substrate loss of integrity.

Basic Process

Review Advisories, Inspect, Identify Anomalies

Assign Severity Levels 1, 2, or 3 to Anomalies

Determine action

Specification Check Why is it important?

- Differences between design, specification and testing of old and new PFP/FP Systems
- Evolution: A H J
- Not "new" fires, but better understanding
- Now: HHF Jet Fires, H₂ Jet Fires, Battery Fires
- Materials, details and thicknesses have evolved
- Q1: Will our legacy PFP/FP systems provide the protection we currently need?
- Q2: Why are we repairing them if they don't?

Old Systems in a New Environment PRPNet

Old Systems in a New Environment PFPNet

Old Systems in a New Environment PRPNet

Checking the Specification The dangers of assuming an old system is OK

"Don't do it"

- Ignore ad hoc rules (eg A60 = H30 = J15)
- The devil is in the detail
- Half as thick doesn't mean it has half the performance
- Seek advice: original manufacturer/experienced 3rd Party

Identify system

Existing performance meet current need?

Basic Process

Review Advisories, Inspect, Identify Anomalies

Assign Severity Levels 1, 2, or 3 to Anomalies

Determine action

	PFP Jacket System – Damage Assessment Checklist				
Damage	Description	Severity			
Pack Thickness	· · · · · · · · · · · · · · · · · · ·				
	Are any Panels Missing:	1			
Missing Items	Are any Joint Covers Missing:	1			
	Are any Rain Covers Missing:	3			
	Are insulated joint covers fitted:	1			
	Are Corner Joints a Good Fit-up:	1			
Joints	Overlap Joints to Correct Dimension:	1			
Joints	Are butt joints fully tightened:	2			
	Are corner joints fully tightened:	2			
	Are overlapping joints fully tightened:	2			

PFP Jacket System – Damage Assessment Checklist				
Damage	Description	Severity		
	Is there Mechanical Fastening:	1		
	Is system retained by installation aids only:	1		
	Is Banding Fitted at Terminations:	1		
Mechanical Fastening	Are some belts & buckles missing:	2		
	Are some lacing anchors missing:	2		
	Are some lacing loops missing:	2		
	Are belts & buckles loose / unfastened:	2		
	Is some Single Lacing Wire Missing:	2		
	Single Lacing in Place Rather Than Double:	3		
*If a Fastener is	3			

LWC PFP

Assessing the Severity of Age and Damage

Assessing the Severity of Age and Damage

Assessing the Severity of Age and Damage

Age and Damage

No. 1:

Guideline No. 1:

Guideline No. 1:

Lightweight Cementitious

Passive Fire Protection Systems

April 2025

Damage	Protected Item	Description	Severity
Dropped Object	Any	Significant area detached and only lightly retained that poses a risk to life safety or plant integrity	1
	Process Vessel	>3mm wide - any length - bonded/disbonded	1
		Any crack width - disbonded	1
		<3mm wide - bonded	2
		>3mm wide – bonded – any length	1
Cracks	Barrier	Any crack width - disbonded	1
hairline,		<3mm wide - bonded	2
shrinkage,	Structural Steel	>3mm wide - any bond - any length	1
wide, part or		<3mm wide - any length – on edge feature	1
through thickness		<3mm wide - disbonded	1
		<3mm wide – bonded	3
	General	>3mm wide – any bond – any length	1
		Any width or length - disbonded	1
		<3mm wide – bonded – any length	3
Disbonded (no	Amu	Unbonded area >1.25m ²	1
cracks visible)	- AIIV	Unbonded area < 1.25m ²	3

Damage	Protected Item	Description	Severity
Individual area of mechanical damage	Process Vessels and Barriers Structural Steel And General	Any area with remaining depth < 50% of thickness Area > 10,000mm ² with remaining depth > 50% of thickness	1
(gouge, scrape, chip,		Area between 3,000mm ² and 10,000mm ² with remaining depth > 50% of thickness	2
removal, etc)		Area <3,000mm ² with remaining depth > 50% of thickness	3
3,000mm ² = 50 x 60mm = 2" x 2.5"		Any area with remaining depth <50% of thickness and located on an edge feature	1
10,000mm ² =		Area > 10,000mm ² with remaining depth < 50% of thickness – any location	1
100x100mm = 4" x 4"		Area between 3,000mm² and 10,000mm² with remaining depth > 50% of thickness – any location	2
4 7 4		Area <3,000mm ² any depth – any location	3
Multiple areas of mechanical	chanical	Two or more individual Severity Level 1 anomalies within 500mm of each other	1
damage		Two or more individual Severity Level 2 anomalies within 500mm of each other	1
500mm = 20°		Two or more individual Severity Level 3 anomalies within 500mm of each other	2

Damage	Protected Item	Description	Severity
		Any area eroded down to/through retention system	1
General Material Loss	Any	Surface spalling over a wide area of item	2
matorial Eooo		Localised light surface spalling or surface erosion	3
		Soft and corrosion product visible	1
Waterlogged Material	Any	Soft and algae visible	2
macoriai		Soft on immediate surface only	3
	Any	Large area over entire item is damaged	1
Topcoat		Medium area or multiple small areas	2
		Small local areas	3
		Mastic seal missing or brittle	1
Terminations	٨٠٠٠	Open/disbonded termination	1
and Details	Any	Corrosion product at termination	1
		Material split and open at corner beads	1
Signs of		Wide open crack in LWC material	1
Substrate Integrity Damage	Any	Bulging, disbonded and cracked LWC material	1
	. u.y	Leaching of corrosion products through LWC material	1

What lies beneath - CUF

Advisories

Identifying problems and errors that keep on happening

What are they?

- Captured knowledge for future users
- Observations/opinions/experience on root causes of observed damage
- Provide:
 - Source of good and bad practice
 - Improve detailing/design to improve integrity
 - Education tool for training
 - Help to guide inspections

What do they cover?

- Understanding the Test Certificate or Test Report
- Detailing Practice box construction
- Components edge beads, seals
- Connections and fastenings
- Other Hazards explosions
- Application and Installation
- Inspection and Maintenance
- Differences in Designs for different hazards

Repairs

Short, Medium and Long Term
Same materials
Dissimilar materials
Overclad systems

Temporary Repairs

No Certification, no testing No fire resistance Stopping material from falling

"Short/Medium" Term Repairs

Often ad hoc and untested
Time limited
Evaluate impact on risk

FR Repair Mortars and Putties

For Jet and Pool Fire Repairs

Tested
Time limited
Size limited

Long Term Repairs

Dissimilar Material Repairs

Stepped/chamfered (Chartek)

Long Term – Overclad Repairs PFPNet

Adaptations from other certifications (eg vessels) Require "confidence" in what is happening beneath

Component-Based System Repairs PFPNet

If a component or fixing is missing - replace it

No Short Cuts

Panels and components are easily replaced

Conclusions

This is a large, wide-ranging subject that can't be covered in 25 minutes.

Including questions.

• Any Questions?